Discover

Unlocking data-driven capabilities for the entire transport and storage community

Bibliographies

Filter by Categories

TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics

Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

Data-driven offshore CO2 saline storage assessment methodology

Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542

SMART Task 3: Pressure and Stress

White, J. Williams-Stroud, M. (2022). SMART Phase III: Pressure and Stress. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_White_2.pdf

Real Time Visualization of Rock and Fluid Properties

Alumbaugh, D. (2022). Real Time Visualization of Rock and Fluid Properties. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Alumbaugh.pdf

SMART: Overview of SMART Initiative – Phase I Accomplishments and Phase II Plans

Bromhal, G. Mishra, S. (2022). SMART: Overview of SMART Initiative – Phase I Accomplishments and Phase II Introduction. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Bromhal.pdf

NETL RIC CarbonSAFE Assistance (FWP-1022403)

Crandall, D. (2022). NETL RIC CarbonSAFE Assistance. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Crandall.pdf

National Risk Assessment Partnership: Maturing Tools and Recommended Practices for Site and Basin-Scale Risk Management

Bacon, D. (2022). NRAP: Tools and Recommended Practices for Site and Basin Scale Risk Management. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Bacon.pdf

National Risk Assessment Partnership: Tools and Recommended Practices for Induced Seismicity Risk Management

White, J. (2022). NRAP: Tools and Recommended Practices for Induced Seismicity and Risk Management. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_White.pdf

National Risk Assessment Partnership: Phase II Key Accomplishments and Phase III Introduction

Dilmore, R. (2022). National Risk Assessment Partnership: Phase II Accomplishments and Phase III Introduction. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS18_Dillmore.pdf

A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site

Mitchell, N.; Lackey, G.; Schwartz, B.; Strazisar, B.; Dilmore, R. A Quantitative Risk Assessment Approach for Developing Contingency Plans at a Geologic Carbon Storage Site. Greenhouse Gases: Science and Technology 2023, 13(3), 320-339. https://doi.org/10.1002/ghg.2219.

Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network

Wang, Z.; Dilmore, R. M.; Bacon, D. H.; Harbert, W. Evaluating Probability of Containment Effectiveness at a GCS Site using Integrated Assessment Modeling Approach with Bayesian Decision Network, Greenhouse Gases: Science and Technology, 2021, 11(2), 360-376. https://doi.org/10.1002/ghg.2056.

Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage

Chang, K.W., and Yoon, H., “Modeling‐Based Assessment of Deep Seismic Potential Induced by Geologic Carbon Storage,” Seismological Research Letters, 49(3), 1447–1454, (2023) https://doi.org/10.1785/0220220365.

Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity

Liu, Y., Feng, S., Tsvankin, I., Alumbaugh, D., and Lin, Y., “Joint Physics-Based and Data-Driven Time-Lapse Seismic Inversion: Mitigating Data Scarcity,” Geophysics, (2022) doi.org/10.1190/geo2022-0050.1.

NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification

Thomas, R. B.; Schwartz, B.; Oldenburg, C.; Bacon, D. H.; Gasperikova, E.; Lackey. G.; Appriou, D.; Harp, D.; Chen, B.; Doughty, C.; Burghardt, J.; Pawar, R. J.; Brown, C. F.; Smith, M. M.; Van Voorhees, R.; Strazisar, B. R.; Dilmore, R. M. NRAP Recommended Practices for Containment Assurance and Leakage Risk Quantification; NRAP-TRS-I-002-2022; DOE.NETL-2022.3344; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2022; p 76. DOI: 10.2172/1906399 https://www.osti.gov/biblio/1906399/

Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership

Dilmore, R. M.; Appriou, D.; Bacon, D.; Brown, C.; Cihan, A.; Gasperikova, E.; Kroll, K.; Oldenburg, C. M.; Pawar, R. J.; Smith, M. M.; Strazisar, B. R.; Templeton, D.; Thomas, R. B.; Vasylkivska, V. S.; White, J. A. Computational Tools and Workflows for Quantitative Risk Assessment and Decision Support for Geologic Carbon Storage Sites: Progress and Insights from the U.S. DOE’s National Risk Assessment Partnership. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4298480

Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility

Brown, C. F.; Lackey, G.; Schwartz, B.; Deane, M.; Dilmore, R.; Blanke, H.; O’Brien, S.; Rowe, C. O’Brien, S.; Rowe, C. Extended Abstract to: Integrating Qualitative and Quantitative Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4297575

High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study

Fathi, E., Carr, T.R., Adenan, M.F., Panetta, B., Kumar, A., and Carney, B.J., ”High-Quality Fracture Network Mapping Using High Frequency Logging While Drilling (LWD) Data: MSEEL Case Study,” Machine Learning with Applications, Vol. 10 (2022), https://doi.org/10.1016/j.mlwa.2022.100421.

Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning

Kadeethum, T., Ballarin, F., O’Malley, D., Choi, Y., Bouklas, N., and Yoon, H., “Reduced Order Modeling for Flow and Transport Problems with Barlow Twins Self-Supervised Learning,” Scientific Reports, 12, Article 20654 (2022), https://doi.org/10.1038/s41598-022-24545-3.

Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies

Van Voorhees, R.; Thomas, R. B.; Schwartz, B.; Dilmore, R.; Hamling, J.; Klapperich, R.; Taunton, M. Regulatory Considerations for Geologic Storage of Carbonated Brine Streams. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4285028

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System

Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical

Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data

Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129

Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP

Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761

Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics

Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract

Subsurface Trend Analysis

Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138 

Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models

Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210

Scroll to Top