Morkner, P. (2022). An Updated Carbon Storage Open Database – Geospatial Data Aggregation to Support Scaling up CCS. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Morkner.pdf
Discover
Unlocking data-driven capabilities for the entire transport and storage community
Home » Bibliographies
Bibliographies
An Updated Carbon Storage Open Database – Geospatial Data Aggregation to Support Scaling up CCS
Advanced Data Extraction to Support a Living Database
Sabbatino, M. (2022). Advanced Data Extraction to Support a Living Database. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Sabbatino.pdf
Geo-Data Science Driven Insights Into CCS EJ/SJ Opportunities in Support of Energy Community Transitions
Bauer, J. (2022). Geo-Data Science Driven Insights into CCS EJ/SJ Opportunities in Support of Energy Community Transitions. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Bauer.pdf
The DisCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future
Rose, K. Morkner, P. Bauer, J. (2022). The disCO2ver Platform, Building a Virtual Carbon Storage Data Laboratory and Infrastructure for the Future. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Rose.pdf
DOE Offshore Carbon Storage Saline Calculator Methodology and Tool
Romeo, L. Rose, K. Bauer, J. Mark-Moser, M. Bean, A. Thomas, B. (2022). Offshore CO2 Saline Storage Methodology and Calculator. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Romeo.pdf
Site Selection and Cost Estimation of Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico
Wijaya, N. Vakara, D. Bello, K. Vactor, T. Grant, T. Morgan, D. (2022). Site Selection and Cost Estimation for Pilot-Scale CO2 Saline Storage Study in the Gulf of Mexico. 2022 Carbon Management Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Wijaya_2.pdf
Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud
Morkner, P., Bauer, J., Pantaleone, S., Shay, J., Rowan, C., Baker, V., Obradovich, J., and Rose, K. Updating NATCARB and Carbon Storage Geospatial Resources via EDX Cloud. U.S Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting, August 16th, 2022. https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS16_Morkner.pdf
3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project
Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1
Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage
Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.
AIIM: Advanced Infrastructure Integrity Modeling
Bean, A., Romeo, L., Bauer, J. AIIM: Advanced Infrastructure Integrity Modeling. TechConnect. June 13-15, 2022. National Harbor, D.C. https://www.osti.gov/biblio/1890422
Enhancing Knowledge Discovery from Unstructured Data Using a Deep Learning Approach to Support Subsurface Modeling Predictions
Hoover B, Zaengle D, Mark-Moser M, Wingo P, Suhag A and Rose K. (2023) Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Front. Big Data 6:1227189. doi: https://doi.org/10.3389/fdata.2023.1227189
Dynamic risk assessment for geologic CO2 sequestration
Chen, B.; Harp, D. R.; Zhang, Y.; Oldenburg, C. M.; Pawar, R. J. (in Press, Corrected Proof). Dynamic risk assessment for geologic CO2 sequestration. Gondwana Research 2022. https://doi.org/10.1016/j.gr.2022.08.002.
Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility
Brown, C. F., G. Lackey, N. Mitchell, S. Baek, B. Schwartz, M. Dean, R. Dilmore, H. Blanke, S. O’Brien, and C. Rowe. 2023. “Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility.” International Journal of Greenhouse Gas Control 129: 103972. https://doi.org/10.1016/j.ijggc.2023.103972.
A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites
Dennise C. Templeton, Martin Schoenball, Corinne E. Layland‐Bachmann, William Foxall, Yves Guglielmi, Kayla A. Kroll, Jeffrey A. Burghardt, Robert Dilmore, Joshua A. White; A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters 2022;; 94 (1): 113–122. https://doi.org/10.1785/0220210284
Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA
Sharma, M., Paronish, T., Mitchell, N., Crandall, D., Zerbe, S., Pyle, S.J., Howard, C.M., Haldeman, A., and Neubaum, J., “Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA,” NETL-PUB-3889, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 36, https://edx.netl.doe.gov/dataset/ct-scanning-and-gm-of-appalachian-basin-core-from-the-jonesand-laughlin-1-well-beaver-county-pa, DOI: 10.2172/1995971.
Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core
Crandall, D., Paronish, T., Mitchell, N., Jarvis, K., Brown, S., Moore, J., Gill, M., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core,” NETL-PUB-3877, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 60, https://edx.netl.doe.gov/dataset/computed-tomography-scanning-and-petrophysicalmeasurements-of-the-lively-grove-1-well-core, DOI: 10.2172/1989188.
Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin
Paronish, T., Mitchell, N., Brown, S., Pohl, M., Crandall, D., Blakley, C., Korose, C., and Okwen, R., “Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin,” DOE/NETL-2023/4323; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p. 68, DOI: https://doi.org/10.2172/1962306.
Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core
Crandall, D., Gill, M., Paronish, T., Brown, S., Mitchell, N., Jarvis, K., Moore, J., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core,” DOE.NETL-2023.3847; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p 60. https://doi.org/10.2172/1963265.
A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage
Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210