Lackey, G.; Dilmore, R. NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure; DOE/NETL-2021/2660; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2021; p 100. DOI: 10.2172/1828877 https://www.osti.gov/biblio/1828877
Discover
Unlocking data-driven capabilities for the entire transport and storage community
Home » Bibliographies
Bibliographies
NETL Well Integrity Workshop: Identifying Well Integrity Research Needs for Subsurface Energy Infrastructure
NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model
Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.
Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage
Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/
Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration
Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471
Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock
Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub
Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity
Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.
NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management
Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub
Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico
Pantaleone, S., Mark Moser, M., Bean, A., Walker, S., Rose, K., 2021, “Forecasting 3D Structural Complexity with AI/ML method: Mississippi Canyon, Gulf of Mexico”. AAPG/SEG IMAGE conference, Denver, Colorado, September 26, 2021 October 1, 2021. https://edx.netl.doe.gov/sites/offshore/forecasting-3d-structural-complexity-with-ai-ml-method-mississippi-canyon-gulf-of-mexico/
Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis
Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.
NRAP-Open-IAM: FutureGen2 Component Models
Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf
Enhancing Knowledge Discovery from Unstructured Data Using a Deep Learning Approach to Support Subsurface Modeling Predictions
Hoover B, Zaengle D, Mark-Moser M, Wingo P, Suhag A and Rose K. (2023) Enhancing knowledge discovery from unstructured data using a deep learning approach to support subsurface modeling predictions. Front. Big Data 6:1227189. doi: https://doi.org/10.3389/fdata.2023.1227189
Dynamic risk assessment for geologic CO2 sequestration
Chen, B.; Harp, D. R.; Zhang, Y.; Oldenburg, C. M.; Pawar, R. J. (in Press, Corrected Proof). Dynamic risk assessment for geologic CO2 sequestration. Gondwana Research 2022. https://doi.org/10.1016/j.gr.2022.08.002.
Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility
Brown, C. F., G. Lackey, N. Mitchell, S. Baek, B. Schwartz, M. Dean, R. Dilmore, H. Blanke, S. O’Brien, and C. Rowe. 2023. “Integrating Risk Assessment Methods for Carbon Storage: A Case Study for the Quest Carbon Capture and Storage Facility.” International Journal of Greenhouse Gas Control 129: 103972. https://doi.org/10.1016/j.ijggc.2023.103972.
A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites
Dennise C. Templeton, Martin Schoenball, Corinne E. Layland‐Bachmann, William Foxall, Yves Guglielmi, Kayla A. Kroll, Jeffrey A. Burghardt, Robert Dilmore, Joshua A. White; A Project Lifetime Approach to the Management of Induced Seismicity Risk at Geologic Carbon Storage Sites. Seismological Research Letters 2022;; 94 (1): 113–122. https://doi.org/10.1785/0220210284
Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA
Sharma, M., Paronish, T., Mitchell, N., Crandall, D., Zerbe, S., Pyle, S.J., Howard, C.M., Haldeman, A., and Neubaum, J., “Computed Tomography Scanning and Geophysical Measurements of Appalachian Basin Core from the Jones and Laughlin #1 Well, Beaver County, PA,” NETL-PUB-3889, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 36, https://edx.netl.doe.gov/dataset/ct-scanning-and-gm-of-appalachian-basin-core-from-the-jonesand-laughlin-1-well-beaver-county-pa, DOI: 10.2172/1995971.
Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core
Crandall, D., Paronish, T., Mitchell, N., Jarvis, K., Brown, S., Moore, J., Gill, M., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Petrophysical Measurements of the Lively Grove #1 Well Core,” NETL-PUB-3877, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2023, p. 60, https://edx.netl.doe.gov/dataset/computed-tomography-scanning-and-petrophysicalmeasurements-of-the-lively-grove-1-well-core, DOI: 10.2172/1989188.
Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin
Paronish, T., Mitchell, N., Brown, S., Pohl, M., Crandall, D., Blakley, C., Korose, C., and Okwen, R., “Computed Tomography Scanning and Geophysical Measurements of the CarbonSAFE Seal Integrity Wells in the Illinois Basin,” DOE/NETL-2023/4323; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p. 68, DOI: https://doi.org/10.2172/1962306.
Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core
Crandall, D., Gill, M., Paronish, T., Brown, S., Mitchell, N., Jarvis, K., Moore, J., Blakley, C., Okwen, R., Korose, C., and Carman, C., “Computed Tomography Scanning and Geophysical Measurements of the One Earth Energy Well #1 Core,” DOE.NETL-2023.3847; NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, (2023), p 60. https://doi.org/10.2172/1963265.
A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage
Bhuvankar, P.; Cihan, A.; Birkholzer, J. A Framework to Simulate the Blowout of CO2 Through Wells in Geologic Carbon Storage. International Journal of Greenhouse Gas Control, 2023, 127, Article 103921, ISSN 1750-5836. https://doi.org/10.1016/j.ijggc.2023.103921.
Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells
Bello, K., Vikara, D., Sheriff, A., Viswanathan, H., Carr, T., Sweeney, M., O’Malley, D., Marquis, M., Vactor, R.T., and Cunha, L., “Evaluation of the Economic Implications of Varied Pressure Drawdown Strategies Generated Using a Real-time, Rapid Predictive, Multi-Fidelity Model for Unconventional Oil and Gas Wells,” Gas Science and Engineering, (2023) https://doi.org/10.1016/j.jgsce.2023.204972.
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210