Discover

Unlocking data-driven capabilities for the entire transport and storage community

Bibliographies

Filter by Categories

NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403)

Crandall, D.  (2021, August 5). NETL RIC’s Carbon Storage Research Supporting Field Efforts (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Crandall5.pdf

Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403)

Hammack, R. (2021, August 5). Modeling the MT and CSEM Response scCO2 Plume at the Kemper CarbonSAFE Site (FWP-1022403) [Conference presentation]. Carbon Management and Oil and Gas Research Project Review Meeting. https://netl.doe.gov/sites/default/files/netl-file/21CMOG_CS_Hammack5.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube

Morkner, P., Bauer, J., Rose, K., Rowan, C., Barkhurst, A. (2021, July 27). Fostering Data Curation Throughout the Entire Carbon Storage Data Life Cycle via the Energy Data eXchange and GeoCube. [Conference presentation]. Invited talk at the CCUS Database Virtual Symposium. https://www.osti.gov/servlets/purl/1844394

Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface

Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub

NRAP-Open-IAM: Open Wellbore Component v2.0

Bacon D. H.; Pan, L.; Oldenburg, C. M. NRAP-Open-IAM: Open Wellbore Component v2.0, 2021. PNNL-31543. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1825929

Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes

Kroll, K. A.; Cochran, E. S. Stress Controls Rupture Extent and Maximum Magnitude of Induced Earthquakes. Geophysical Research Letters 2021, 48(11), e2020GL092148. https://doi.org/10.1029/2020GL092148

AI/ML Forecasting of Offshore Platform Integrity to Improve Safety and Reliability

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. 2021. Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://www.osti.gov/servlets/purl/1845120

Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk

Romeo, L., Dyer, A., Bauer, J., Barkhurst, A., Duran, R., Nelson, J., Sabbatino, M., Wenzlick, M., Wingo, P., Zaengle, D. and Rose, K. (2021, April 9). Forecasting Offshore Platform Integrity: Applying Machine Learning Algorithms to Quantify Lifespan and Mitigate Risk [Conference presentation]. Machine Learning in Oil & Gas. April 15, 2021. Virtual. https://edx.netl.doe.gov/sites/offshore/forecasting-offshore-platform-integrity-applying-machine-learning-algorithms-to-quantify-lifespan-and-mitigate-risk/

Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines

Rod, K.A.; Cantrell, K.J.; Varga, T.; Battu, A.; Brown, C.F. Sealing of Fractures in a Representative CO2 Reservoir Caprock by Migration of Fines. Greenhouse Gases: Science and Technology 2021. 11(3), 483-492. PNNL-SA-160332, https://doi.org/10.1002/ghg.2061

NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model

Baek S.; Bacon, D. H.; Huerta, N.J. NRAP-Open-IAM Multisegmented Wellbore Reduced-Order Model. PNNL-32364, 2021. Richland, WA: Pacific Northwest National Laboratory. https://doi.org/10.2172/1840652.

Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage

Templeton, D., Schoenball, M., Layland-Bachmann, C., Foxall, W., Kroll, K., Burghardt, J., Dilmore, R., White, J.. Recommended Practices for Managing Induced Seismicity Risk Associated with Geologic Carbon Storage (Draft Report) 2021. NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV. https://www.osti.gov/biblio/1834402/

Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration

Guglielmi, Y.; Nussbaum, C.; Cappa, F.; de Barros, L.; Rutqvist, J., Birkholzer, J. Field-scale fault reactivation experiments by fluid injection highlight aseismic leakage in caprock analogs: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control 2021, 111, Article 103471. https://doi.org/10.1016/j.ijggc.2021.103471

Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock

Bao, T.; Burghardt, J. A.; Gupta, V.; Edelman, E.; McPherson, B. J.; White, M. D. Experimental workflow to estimate model parameters for evaluating long term viscoelastic response of CO2 storage caprock. International Journal of Rock Mechanics and Mining Sciences, 2021. 146, Article 104796. PNNL-SA-153774. doi:10.1016/j.ijrmms.2021.104796. https://www.sciencedirect.com/science/article/abs/pii/S1365160921001817?via%3Dihub

Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity

Min, Y.; Montross, S.; Spaulding, R.; Brandi, M.; Huerta, N.; Thomas, R.; Kutchko, B. Alteration of Fractured Foamed Cement Exposed to CO2-Saturated Water: Implications for Well Integrity. Environmental Science & Technology 2021, 55(19), 13244-13253. https://doi.org/10.1021/acs.est.1c02699.

NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management

Vasykivska, V.; Dilmore, R.; Lackey, G.; Zhang, Y.; King, S.; Bacon, D.; Chen, B.; Mansoor, K.;Harp, D. NRAP-open-IAM: A flexible open-source integrated-assessment-model for geologic carbon storage risk assessment and management. Environmental Modeling & Software 2021, 143, Article 105114. https://www.sciencedirect.com/science/article/abs/pii/S1364815221001572?via%3Dihub

Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis

Chen, B.; Zhou, Q. Propagation, arrest, and reactivation of thermally driven fractures in an unconfined half-space using stability analysis. Theoretical and Applied Fracture Mechanics 2021, 114, Article 102969. https://doi.org/10.1016/j.tafmec.2021.102969.

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-31781.pdf

NRAP-Open-IAM: FutureGen2 Component Models

Bacon D. H. NRAP-Open-IAM: FutureGen2 Component Models, 2021. PNNL-31781. Richland, WA: Pacific Northwest National Laboratory. https://www.osti.gov/servlets/purl/1825928

Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface

Rhino, K.; Iyer, J.; Walsh, S. D. C.; Carroll, S. A.; Smith, M. M. Influence of Effective Stress and Transport on Mechanical and Chemical Alteration Processes at the Cement-Caprock Interface. International Journal of Greenhouse Gas Control 2021,109, Article 103340. https://www.sciencedirect.com/science/article/pii/S175058362100092X?via%3Dihub

Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills

Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016

Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System

Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical

Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data

Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129

Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP

Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761

Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics

Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract

Subsurface Trend Analysis

Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138 

Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models

Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210

Scroll to Top