Pfander, I., Romeo, L., Amrine, D., Sabbatino, M., Sharma, M., Tetteh, D., and Bauer, J., “Deploying a Publicly Available and Living National Oil and Gas Well Geodatabase,” 2024 Esri User Conference, San Diego, CA, July 15–19, 2024.
Discover
Unlocking data-driven capabilities for the entire transport and storage community
Home » Bibliographies
Bibliographies
Deploying a Publicly Available and Living National Oil and Gas Well Geodatabase
A Geodatabase Designed to Inform and Support Safe CO2 Transport-Route Planning
Schooley, C., Romeo, L., Pfander, I., Justman, D., Sharma, M., Bauer, J., and Rose, K.,“A Geodatabase Designed to Inform and Support Safe CO2 Transport-Route Planning,” 2024 Esri User Conference, San Diego, CA. July 15–19, 2024. https://www.osti.gov/biblio/2403249
A Dashboard to Support Community Transitions for Carbon Capture and Storage
Sharma, M., White, C., Cleaveland, C., Amrine, D., Rose, K., and Bauer, J., “A Dashboard to Support Community Transitions for Carbon Capture and Storage,” 2024 Esri User Conference, San Diego, CA, July 15–19, 2024. https://www.osti.gov/biblio/2404263
Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis
Creason, C.G., Mulhern, J.S., Cordero Rodriguez, N., Mark-Moser, M., Lara, A., Shay, J., and Rose, K., “Where are the Data? Automating a Workflow for Carbon Storage Data Gap Analysis,” FECM/NETL Carbon Management Research Project Review Meeting, Pittsburgh, PA, August 5–9, 2024. https://netl.doe.gov/sites/default/files/netl-file/24CM/24CM_CTS3_5_Creason.pdf
Extensive Pipeline Location Data Resource: Integrating Reported Incidents, Past Environmental Loadings, and Potential Geohazards for Integrity Evaluations in the U.S. Gulf of Mexico
Isabelle Pfander, Lucy Romeo, Rodrigo Duran, Alec Dyer, Catherine Schooley, Madison Wenzlick, Patrick Wingo, Dakota Zaengle, Jennifer Bauer. Extensive pipeline location data resource: Integrating reported incidents, past environmental loadings, and potential geohazards for integrity evaluations in the U.S. Gulf of Mexico, Data in Brief, Volume 55, 2024, 110728, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2024.110728.
Computed Tomography Scanning and Geophysical Measurements of the UW Enterprises Well in Southwestern Indiana
Hu, L., Paronish, T., Crandall, D., Jarvis, K., Mitchell, N., Brown, S., Workman, S., Douds, A., and Mastalerz, M., “Computed Tomography Scanning and Geophysical Measurements of the UW Enterprises Well in Southwestern Indiana,” DOE/NETL-2024/4803, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV, 2024, https://doi.org/10.2172/2371703.
Offshore Geologic Carbon Storage Data Collection and Data Gaps Analysis
Mulhern, J.S., Mark-Moser, M., and Rose, K., 2024. Offshore Geologic Carbon Storage Data Collection and Data Gaps Analysis. DOE.NETL-2024.4804; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2024; p 24. https://doi.org/10.2172/2382659
Energy Community Dynamic Database for CCS Systems
Sharma, M., White, C., Bocan, J., Cleaveland, C., Malay, C., Bauer, J., and Rose, K., “Energy Community Dynamic Database for CCS Systems,” GES Tech Talk, Morgantown, WV, June 2024.
Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin
Liu, G., Kumar, A., Harbert, W., Siriwardane, H., Myshakin, E., Crandall, D., Cunha, L., (2024, June 23). Machine Learning Application for CCUS Carbon Storage: Fracture Analysis and Mapping in The Illinois Basin [Conference presentation], ARMA 24–1183, 58th U.S. Rock Mechanics/Geomechanics Symposium, Golden, Colorado. https://www.osti.gov/biblio/2228745
Supporting Safe CO2 Transport-Route Planning: A Multifaceted Geospatial Database Enhancing Carbon Models
Schooley, C., Houghton, B., Romeo, L., Gao, M., Leveckis, S., Justman, D., Chong, L.,Sharma, M., Bauer, J., and Rose, K., “Supporting Safe CO2 Transport-Route Planning: A Multifaceted Geospatial Database Enhancing Carbon Models,” SAMI Technical Talk, San Diego, CA, June 20, 2024.
Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model
Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.
A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site
Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578
Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties
Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.
TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics
Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project
Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1
Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage
Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.
Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring
Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.
Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization
Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.
Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment
Ghanem, R., Zhang, R., Rose, K., invited talk, Probabilistic Machine Learning for Integrated Social-Natural-Physical Assessment, AGU Annual Meeting 2020, Session: H027 – Artificial Intelligence and Machine Learning for Multiscale Model-Experimental Integration https://agu.confex.com/agu/fm20/prelim.cgi/Session/103051
Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry
Dyer, A., Zaengle, D., Mark-Moser, M., Duran, R., Suhag, A., Rose, K., Bauer, J. Deep Learning to Locate Seafloor Landslides in High Resolution Bathymetry. AGU Annual Fall Meeting (Virtual), 2020. Session: NH007 – Data Science and Machine Learning for Natural Hazard Sciences II Posters. https://www.osti.gov/servlets/purl/1779617
A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico
Duran, R., Dyer, A., Mark-Moser, M., Bauer, J., Rose, K., Zaengle. D., Wingo, P. 2020. A Geospatial Analytical Framework to Identify Seafloor Geohazards in the Northern Gulf of Mexico. AGU Annual Meeting 2020, Session: NH010 – Geohazards in Marine and Lacustrine Environments. https://ui.adsabs.harvard.edu/abs/2020AGUFMNH004..08D/abstract
Optimizing Prediction of Reservoir Properties with Artificial Intelligence, Big Data, and the Subsurface Trend Analysis Method
Mark-Moser, M., Suhag, A., Rose, K., Wingo, P. (2020, November 9). Optimizing prediction of reservoir properties with artificial intelligence, big data, and the Subsurface Trend Analysis method [Conference presentation]. Machine Learning for Oil and Gas 2020, Nov. 9-11, Virtual. https://edx.netl.doe.gov/sites/offshore/optimizing-prediction-of-reservoir-properties-with-artificial-intelligence-big-data-and-the-subsurface-trend-analysis-method/
Advanced Geospatial Analytics and Machine Learning for Offshore and Onshore Oil & Natural Gas Infrastructure
Justman D., Romeo, L., Barkhurst, A., Bauer, J., Duran, R., Dyer, A., Nelson, J., Sabbatino, M., Wingo, P., Wenzlick, M., Zaengle, D., Rose, K. (2020, October 6-7). Advanced geospatial analytics and machine learning for offshore and onshore oil & natural gas infrastructure. [Virtual conference presentation]. GIS Week 2020. https://www.osti.gov/servlets/purl/1767074
Enhancing Knowledge Discovery of Unstructured Data to Support Context in Subsurface-Modeling Predictions
Hoover, B., Mark-Moser, M., Wingo, P., Suhag, A., Rose, K. 2021. Enhancing knowledge discovery of unstructured data to support context in subsurface-modeling predictions. ACE/SEG21, Denver, Colorado, Sept. 26th-Oct. 1st. https://www.osti.gov/servlets/purl/1843422
Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX
Morkner, P., Rowan, C., Rose, K., Bauer, J., Sabbatino, M., Barhurst, A. Using AI/ML to Curate Thousands of Carbon Storage Data Assets via EDX. NETL Carbon Storage Review Meeting. September 10, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Morkner.pdf
Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator
Romeo, L., Rose, K., Thomas, R., Mark-Moser, M., Barkhurst, A., Wingo, P., Bean, A. 2020. Assessing Offshore CO2 Saline Storage Potential with the NETL Calculator. Carbon Storage Review Meeting. September 11, 2020. Virtual. https://netl.doe.gov/sites/default/files/netl-file/20CSVPR_Romeo_11.pdf
Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas
Dyer, A., Romeo, L., Wenzlick, M., Bauer, J., Nelson, J., Duran, R., Zaengle, D., Wingo, P., and Sabbatino, M. 2020. Building an Analytical Framework to Measure Offshore Infrastructure Integrity, Identify Risk, and Strategize Future Use for Oil and Gas. Esri User Conference, San Diego, CA, July 13-15, 2020. https://www.osti.gov/servlets/purl/1604638
Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar
Rose, K., Barkhurst, A., Mark-Moser, M., Romeo, L., and Wingo, P., 2020, Harnessing the Power of DOE Data Computing for End-user Analytics, SMART Webinar 6/25/2020, https://www.youtube.com/watch?v=G5oUWSb-kHc&feature=youtu.be