Justman, D., Creason, C. G., Pantaleone, S., Amrine, D., Rose, K. (2023, October 15-18). Developing a National Structural Complexity Database for U.S. Saline Basins [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/391762
Discover
Unlocking data-driven capabilities for the entire transport and storage community
Home » Bibliographies
Bibliographies
Developing a National Structural Complexity Database for U.S. Saline Basins
Carbon Storage Open Data Geospatial Curation and Accessibility
Choisser, A., Morkner, P., Sabbatino, M., Bauer, J., Rose, K. (2023, October 16-18). Carbon Storage Open Data Geospatial Curation and Accessibility [Conference presentation]. Geological Society of America Annual Meeting. Pittsburgh, PA. https://community.geosociety.org/gsa2023/home
RokBase: Digital Rock Visualization and Exploration Web Application
Sharma, M. Paronish, T. Crandall, D. Naberhaus, T. Nakacwa, S. (2023, October 16). RokBase: Digital Rock Visualization and Exploration Web Application [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/394714
CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment
Sharma, M. Romeo, L. Bauer, J. Amrine, D. Pfander, I. Sabbatino, M. Rose, K. (2023, October 15) CO2-Locate: A National Oil & Gas Wellbore Database and Visualization Tool to Support Geological and Environmental Assessment [Conference presentation]. GSA Connects Conference 2023. https://gsa.confex.com/gsa/2023AM/meetingapp.cgi/Paper/395013
Carbon Storage Technical Viability Approach (CS TVA): Multi-Factor Data Assessment Workflow to Determine Geologic Sequestration Feasibility
Mulhern, J., Mark-Moser, M., Creason, C.G., Shay, J., and Rose, K., “Carbon Storage Technical Viability Approach (CS TVA): Multi-Factor Data Assessment Workflow to Determine Geologic Sequestration Feasibility,” Geological Society of America Annual Meeting, Pittsburgh, PA, October 15–18, 2023.
F.C. Deemer Repository: Chemostratigraphic Characterization of the Baker Run Reserve No. 8 Well in Clearfield County, Pennsylvania, USA
Paronish, T., Cardenas, K., Crandall, D., and Jarvis, K., “F.C. Deemer Repository: Chemostratigraphic Characterization of the Baker Run Reserve No. 8 Well in Clearfield County, Pennsylvania, USA,” Geological Society of America Annual Meeting, Pittsburgh, PA, October 15–18, 2023.
NETL Core Characterization Lively Grove #1 St. Peter Sandstone
Crandall, D., Paronish, T., Workman, S., Gill, M., Jarvis, K., and Brandi, M., “NETL Core Characterization Lively Grove #1 St. Peter Sandstone,” Illinois Storage Corridor All Hands Meeting, Champaign, IL, September 26, 2023.
Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs
Rowan, C. Sinclair, J. (2023, August 31). Understanding Federal Data Curation Requirements and EDX++ Tool to Serve CS Data Curation Needs [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Rowan.pdf
DOE’s Carbon Matchmaker
Sharma, M. Dooley, K. (2023, August 31). DOE’s Carbon Matchmaker [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Sharma.pdf
Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements
Wanosky, G. Sinclair, J. (2023, August 31). Carbon Storage Bipartisan Infrastructure Law Communications and Stakeholder Engagements [Conference presentation]. FECM/NETL Carbon Management Meeting 2023. https://netl.doe.gov/sites/default/files/netl-file/23CM_CTS31_Wanosky.pdf
Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model
Kadeethum, T., O’Malley, D., Ballarin, F., Ang, I., Fuhg, J.N., Bouklas, N., Silva, V.L.S., Salinas, P., Heaney, C.E., Pain, C.C., Lee, S., Viswanathan, H.S., and Yoon, H., “Enhancing High-Fidelity Nonlinear Solver with Reduced Order Model,” Scientific Reports, 12, Article 20229. (2022) https://doi.org/10.1038/s41598-022-22407-6.
A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site
Lackey, G.; Mitchell, N.; Schwartz, B.; Liu, G.; Vasylkivska, V. S.; Strazisar, B.; Dilmore, R. M. A Quantitative Comparison of Risk-based Leak Mitigation Strategies at a Geologic Carbon Storage Site. 16th International Conference on Greenhouse Gas Control Technologies, GHGT-16, 23-24th October 2022, Lyon, France. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4271578
Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties
Kadeethum, T., O’Malley, D., Choi, Y., Viswanathan, H.S., Bouklas, N., and Yoon, H., “Continuous Conditional Generative Adversarial Networks for Data-Driven Solutions of Poroelasticity with Heterogeneous Material Properties,” Computers & Geosciences, Vol. 167, 105212, (2022), https://doi.org/10.1016/j.cageo.2022.105212.
TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics
Rinaldi, A. P.; Rutqvist, J.; Luu, K.; Blanco-Martin, L.; Hu, M. et al. TOUGH3-FLAC3D: a modeling approach for parallel computing of fluid flow and geomechanics. Computational Geosciences 2022, 26, 1563–1580. https://doi.org/10.1007/s10596-022-10176-0.
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
Data-driven offshore CO2 saline storage assessment methodology
Romeo, L., Thomas, R., Mark-Moser, M., Bean, A., Bauer, J. and Rose, K., 2022. Data-driven offshore CO2 saline storage assessment methodology. International Journal of Greenhouse Gas Control, 119, p.103736. https://www.sciencedirect.com/science/article/pii/S1750583622001542
3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project
Panetta, B., Carr, T., and Fathi, E., “3D Visualization of Integrated Geologic and Geophysical Subsurface Data Using Open-Source Programming: A Case Study Using Data from the MSEEL Project,” AAPG and SEG Second International Meeting for Applied Geoscience & Energy, August 14-15, 2022, Houston, TX, expanded abstract, https://doi.org/10.1190/image2022-3746025.1
Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage
Um, E.S., Alumbaugh, D., Commer, M., Feng, S., Gasperikova, E., Li, Y., Lin, Y., and Samarasinghe, S., “Deep Learning Multiphysics Network for Imaging CO2 Saturation and Estimating Uncertainty in Geological Carbon Storage;” Geophysical Prospecting, (2022) https://doi.org/10.1111/1365-2478.13257.
Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring
Liu, G., Kumar, A., Zhao, S., Shih, C., Vasylkivska, V., Holcomb, P., Hammack, R., Ilconich, J., and Bromhal, G., “Multi-Level of Fracture Network Imaging: A HFTS Use Case and Knowledge Transferring,” presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, (June 2022) https://doi.org/10.15530/urtec-2022-3723466.
Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization
Cappa, F.; Guglielmi, Y.; De Barros, L. Transient evolution of permeability and friction in a slowly slipping fault activated by fluid pressurization. Nature Communications, 2022, 13, 3039 (2022). https://doi.org/10.1038/s41467-022-30798-3.
Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills
Romeo, L., Dyer, A., Nelson, J., Bauer, J., Rose, K., Dao, A., Wingo, P., Creason, C.G., and Sabbatino, M. Building Regional Baselines and a Suite of Spatial Tools to Better Prepare for Oil Spills, AGU Ocean Sciences Meeting 2020, Poster Presentation. https://www.osti.gov/biblio/1787016
Possible Controls on Porosity Preservation in the Andaman Forearc Gas Hydrate System
Johnson, J., Rose, K., Torres, M. (2020, Jan). Possible controls on porosity preservation in the Andaman forearc gas hydrate system: OSR, AOM, and/or marine silicate weathering [Conference presentation]. Geologic Society of America Meeting 2020, Session: T99. Records of Early Diagenesis in Modern and Ancient Sediments. https://community.geosociety.org/gsa2020/program/technical
Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data
Sabbatino, M., Baker, V., Bauer, J., Creason, C., Romeo, L., Rose, K., Rowan, C., Zoch, G., submitted, Back to the Future: Rescue, Curation, and Transformation of a Corpus of Carbon Storage Data, Annual Meeting 2019, Session: AGU Dirty Stories of Data Rescue. https://www.osti.gov/servlets/purl/1778129
Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP
Rose, R. Rowan, C., Sabbatino, M., Baker, V., Bauer, J., Creason, C.G., Jones, T.J., Justman, D., Romeo, L., Suhag, A., Yeates, D., and Walker, S., submitted, Developing a Virtual Subsurface Data Framework: Transforming DOE’s EDX data lake using ML/NLP, Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/596761
Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics
Yeates, D., Walker, S., Fillingham, J., Sabbatino, M., Suhag, A., Rose, K., Mark-Moser, M., Creason, C.G., Baker, V., submitted, Moving data “rocks” out of hard places: adapting and innovating data science tools to improve geoscience analytics, AGU Annual Meeting 2019, Session IN005 – AI for Model and Data Integration in the Geosciences. https://ui.adsabs.harvard.edu/abs/2019AGUFMIN32B..09Y/abstract
Subsurface Trend Analysis
Rose, K., Mark-Moser, M., Suhag, A. Subsurface Trend Analysis: A methodical framework for artificial intelligence subsurface property prediction. Machine Learning for Unconventional Resources, Nov. 18th 2019, University of Houston, Texas. https://www.osti.gov/servlets/purl/1778138
Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models
Creason, C.G., Romeo, L., Bauer, J., Rose, K., Rowan, C., and Sabbatino, M., 2019, Putting Data to Work: Transforming Disparate Open-Source Data for Engineered-Natural Systems and Models, AGU Annual Meeting 2019, Session: IN020 – Data Integration: Enabling the Acceleration of Science Through Connectivity, Collaboration, and Convergent Science. https://www.osti.gov/biblio/1778210