This report summarizes research conducted on several prospective gas- and effluent-handling systems for future coal-gasification plants. Included in the report are results on the resistance of a cobalt-molybdenum water-gas shift catalyst to hydrogen cyanide (HCN) and hydrogen chloride (HC1), which are found in raw fuel gases. HCN was found to have no measurable effect on the catalyst; HCl was found to cause irreversible poisoning. Also presented are data on the vapor-liquid equilibrium behavior of synthesis gas-benzene mixtures and of synthesis gas-water mixtures, including a few ammonia-carbon dioxide-water mixtures that are useful for quench system design. Studies that used a novel, air-regenerable sorbent to remove sulfur compounds from coal-drived fuel gases at elevated temperatures are discussed. In addition, this report discusses exploratory studies that were made on the catalytic properties of silica-supported Group IIA metal oxides toward the hydrolysis of carbonyl sulfide (COS) and HCN. The results suggest that magnesium- and strontium-based catalysts might be competitive with commercial COS hydrolysis catalysts. The ammonia decomposition activities of several materials at temperatures between 1000/sup 0/ and 1200/sup 0/F in the presence of hydrogen sulfide (H/sub 2/S) were examined. Although previous studies conducted at 1400/sup 0/F indicated good catalytic activity, these studies at the lower temperatures indicated that H/sub 2/S has an inhibitory effect on ammonia decomposition. Finally, experimental studies were made on the separation characteristics of several commercial microfiltration, ultrafiltration, and reverse osmosis membrane systems as applied to raw process condensates. The results suggest that membrane separation is a viable option when used in combination with other conventional treatment techniques and that it may offer significant economic benefits. 68 figures, 59 tables.