Your browser is not recommended for EDX, we suggest using the latest version of Google Chrome.

Geomechanical and Hydrogeological Evaluation of a Shallow Hydraulic Fracture at the Devine Fracture Pilot Site, Medina County, Texas

UT-Austin’s Devine Fracture Pilot Site, 50 miles southwest of San Antonio, Texas, has been targeted for a comprehensive, multidisciplinary development of fracture diagnostic techniques that are cross-validated by ground-truth data acquisition near a recently created, 175-ft-deep, horizontal hydraulic fracture (Ahmadian et al. 2018 Demonstration of proof of concept of electromagnetic geophysical methods for high resolution illumination of induced fracture networks. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 23–25 January 2018. SPE-189858-MS.). To evaluate the fracture diagnostic methods at this site, we conducted injection tests with a predefined volumetric flow-rate profile, resembling a diagnostic fracture injection test on September 2020. Subsequently, we developed hydrogeological and geomechanical models based on flow-rate and bottomhole-pressure measurements. History-matching efforts using a simplified layer-cake hydrogeological model resulted in the field-scale formation permeability of 9.87 × 10–15 m2 (10 mD) and Darcy-scale fracture permeability. The analysis of the bottomhole pressure and injection-rate history showed that (1) the newly created horizontal fracture was closed adjacent to the injection well pre-injection and (2) the initial pump-pressure increase at a nominal volumetric injection rate led to near-well fracture reopening, fluid conductivity increase, and abrupt injection-rate increase. To overcome hydrogeological-model limitations of predicting fracture reopening throughout injection, we extended the modeling to a finite-element, poroelastic analysis of horizontal-fracture growth using a cohesive-zone model. Using this fracture-reopening model, we improved the history match of the transient-pressure response during the experiment by adjusting the hydromechanical properties. Post-injection pressure transient analyses helped reduce uncertainty in the overburden-stress gradient, and the initial hydraulic-fracturing simulation verified the plausibility of achieving the surveyed propped fracture area.

Followers: 0

Authors

Citation (Click to Copy)

Data and Resources

    Gathering Resources...

Keywords

Additional Info

Field Value
Last Updated March 24, 2023, 20:07 (LMT)
Created March 24, 2023, 00:55 (LMT)
Citation Mahdi Haddad, Mohsen Ahmadian, Jun Ge, J.-P. Nicot, William Ambrose, Geomechanical and Hydrogeological Evaluation of a Shallow Hydraulic Fracture at the Devine Fracture Pilot Site, Medina County, Texas, 3/23/2023, https://edx.netl.doe.gov/dataset/geomechanical-and-hydrogeological-evaluation-of-a-shallow-hf-at-dfps-texas
Geospatial no
Netl Product yes
Poc Email scott.beautz@netl.doe.gov
Point Of Contact Scott Beautz
Program Or Project Demonstration of Proof of Concept of a Multiphysics Approach for Real-Time Remote Monitoring of Dynamic Changes in Pressure and Salinity in Hydraulically Fractured Networks
Project Number FE0031785