During this quarter, the majority of activity focused on grout emplacement at the Lodestar Energy Inc. (formerly Costain Coal Co.) surface mine auger holes described in the previous report. Specifically, two different types of grout pumps were investigated: a piston pump used in previous demonstrations, and a progressive cavity pump. The latter is currently utilized for grouting in underground coal mines, is relatively small and portable, and is capable of receiving dry material (e.g., fly ash) and water, mixing it to produce a grout, and pumping the grout at high pressure. It is therefore worthwhile to investigate it`s potential use in auger mine filling. Several field demonstrations were conducted using the different pumps. Numerous problems were encountered when using the progressive cavity pump, all of which were related to its inability to handle the highly reactive and heterogeneous FBC fly ash. Even relatively small ash agglomerates (<1 in. in diameter), which were not a problem for the larger piston pump, caused blockages in the progressive cavity pump which not only proved extremely difficult to clear, but also resulted in significant mechanical failures. Furthermore, mixing of dry fly ash with water within the progressive cavity pump was inconsistent and difficult to control. Consequently, the pump was unable to completely fill even a single auger hole. It was found that a large proportion of bed ash in the grout generated a large amount of heat and caused early stiffening of the material. During the experiments, cylinders of grout were prepared for compressive strength testing, and moisture contents were determined on-site. A thermocouple assembly was also constructed to record grout temperatures within an auger hole.