Acid mine drainage (AMD) from underground mines is a major environmental problem. The disposal of coal combustion by-products (CCB) is also a major national problem due to the large volumes produced annually and the economics associated with transportation and environmentally safe disposal. The concept of returning large volumes of the CCB to their point of origin, underground mines, and using the typically alkaline and pozzolanic attributes of the waste material for the remediation of AMD has been researched rather diligently during the past few years by various federal and state agencies and universities. As the result, the State of Maryland initiated a full-scale demonstration of this concept in a small, 5-acre, unmapped underground mine located near Friendsville, MD. Through a cooperative agreement between the State of Maryland and the U.S. Department of Energy, several geophysical techniques were evaluated as potential tools for the post-injection evaluation of the underground mine site. Three non-intrusive geophysical surveys, two electromagnetic (EM) techniques and magnetometry, were conducted over the Frazee Mine, which is located on Winding Ridge near Friendsville, MD. The EM surveys were conducted to locate ground water in both mine void and overburden. The presence of magnetite, which is naturally inherent to CCB'S due to the combustion process and essentially transparent in sedimentary rock, provided the reason for using magnetometry to locate the final resting place of the CCB grout.